The plant signal salicylic acid shuts down expression of the vir regulon and activates quormone-quenching genes in Agrobacterium.
نویسندگان
چکیده
Agrobacterium tumefaciens is capable of transferring and integrating an oncogenic T-DNA (transferred DNA) from its tumor-inducing (Ti) plasmid into dicotyledonous plants. This transfer requires that the virulence genes (vir regulon) be induced by plant signals such as acetosyringone in an acidic environment. Salicylic acid (SA) is a key signal molecule in regulating plant defense against pathogens. However, how SA influences Agrobacterium and its interactions with plants is poorly understood. Here we show that SA can directly shut down the expression of the vir regulon. SA specifically inhibited the expression of the Agrobacterium virA/G two-component regulatory system that tightly controls the expression of the vir regulon including the repABC operon on the Ti plasmid. We provide evidence suggesting that SA attenuates the function of the VirA kinase domain. Independent of its effect on the vir regulon, SA up-regulated the attKLM operon, which functions in degrading the bacterial quormone N-acylhomoserine lactone. Plants defective in SA accumulation were more susceptible to Agrobacterium infection, whereas plants overproducing SA were relatively recalcitrant to tumor formation. Our results illustrate that SA, besides its well known function in regulating plant defense, can also interfere directly with several aspects of the Agrobacterium infection process.
منابع مشابه
Indoleacetic acid, a product of transferred DNA, inhibits vir gene expression and growth of Agrobacterium tumefaciens C58.
Agrobacterium tumefaciens induces crown gall tumors by transferring a piece of its tumor-inducing plasmid into plant cells. This transferred DNA encodes the synthesis of indole acetic acid (IAA) and cytokinin, and their overproduction results in tumor formation. The transfer is initiated by a two-component regulatory system, VirA/G recognizing plant signal molecules in the plant rhizosphere and...
متن کاملA nontransformable Triticum monococcum monocotyledonous culture produces the potent Agrobacterium vir-inducing compound ethyl ferulate.
Exudates of dicotyledonous plants contain specific phenolic signal molecules, such as acetosyringone, which serve as potent inducers for the expression of the virulence (vir) regulon of the phytopathogen Agrobacterium tumefaciens. This induction activates the Agrobacterium T-DNA transfer process to initiate the genetic transformation of target plant cells. Wounded and metabolically active plant...
متن کاملAgrobacterium tumefaciens responses to plant-derived signaling molecules
As a special phytopathogen, Agrobacterium tumefaciens infects a wide range of plant hosts and causes plant tumors also known as crown galls. The complexity of Agrobacterium-plant interaction has been studied for several decades. Agrobacterium pathogenicity is largely attributed to its evolved capabilities of precise recognition and response to plant-derived chemical signals. Agrobacterium perce...
متن کاملStudying the Expression Pattern of aox2 and pal2 Genes Associated with the Production of Antioxidants and Flavonoids in Yarrow Plant Following Salicylic Acid Treatment
The various medicinal functions of Yarrow have made it an important medicinal plant in medicine. Also, yarrow is a rich source of antioxidants and flavonoids that protect plants from the harmful effects of active oxygen species. The aim of this study was to investigate the effect of salicylic acid treatment on the expression pattern of two genes (aox2 and pal2) involved in the production of ant...
متن کاملSalicylic acid and systemic acquired resistance play a role in attenuating crown gall disease caused by Agrobacterium tumefaciens.
We investigated the effects of salicylic acid (SA) and systemic acquired resistance (SAR) on crown gall disease caused by Agrobacterium tumefaciens. Nicotiana benthamiana plants treated with SA showed decreased susceptibility to Agrobacterium infection. Exogenous application of SA to Agrobacterium cultures decreased its growth, virulence, and attachment to plant cells. Using Agrobacterium whole...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 104 28 شماره
صفحات -
تاریخ انتشار 2007